Root ,Stem & Leaf

1.	Tap root develops	s from		()
	1. Embryonal axis	2. Radicle	3. Dicotyledons	4. Plumule	
2.	Origin of lateral 1	coots and root hairs	respectively is	()
	1. Exogenous & E	ndogenous	2. Endoger	nous & Exogenous	
	3. Endogenous & l	Endogenous	4. Exogene	ous & Exogenous	
3.	In aquatic plants	root caps are replac	ced by	()
	1. Root pockets	2.Root hairs	s 3.Dead tiss	sue 4. Air bubb	les
4.	Roots with symbi	otic association are	seen in)
	1. Rhizobium	4. Avicennia			
5.	Green coloured	oots are seen)
	1. Rhizobium	2. Taeniophyllum	3. Vanda	4. Rafflesia	ļ
6.	Assimilatory root	s that absorbs wate	r from atmosphere	in vapour form are	seen in
			C.O.	()
	1) Taeniophyllum	2) Cuscuta	3) Viscum	4) Vanda	
7.	Roots absorb bot	h food & water from	n the stem in	()
	1) Cuscuta	2) Vanda 🔹 🚺	3) Striga	4) Viscum	
8.	Root hairs are			()
	1) Multicellular	2) Unicellul	lar 3) Acellula	ur 4) Bicellula	ar
9.	Plant growing in	saline marshy soils		()
	1) Avicennia	2) Pistia	3) Eichornia	4) Asparagus	
10.	In Dicots root sy	stem is		()
	1) Adventitious	2) Fibrous	3) Tap root 4) T	ap root & adventitiou	18
11.	True statement a	mong the following		()
	1) Velamin roots a	re living	2) Velamir	n roots are tap roots	
	3) In <i>Cuscuta</i> vela	min roots are present	4) Velamir	n roots attaches to soil	1.
12.	Incorrect stateme	ent regarding region	of meristematic a	ctivity	
				()
	I. It is the region b	etween region of mat	turation and regi9on	of elongation	
	II. The cells proxim	nal to this region unc	lergo rapid elongatio	on.	
	III. This region ab	sorbs water and mine	erals from the soil		
	IV. Cells of this re	gion are very small a	and divide repeatedly	<i>i</i>	
	1. I & II	2. II & III	3. I & III	4. III & IV	

13.	True statement r		()									
	I. A bunch of root												
	II. Mechanism for												
	III. A single tubero												
	IV. Seeds show tw	vo cotyledons											
	1) I & II	2) II & III	3) III & IV	4) I	V & I								
14.	Among the list of plants given here how many of them show root modif												
	carrot, Monstera, turnip, Asparagus, Curcuma, zamikhand, Opuntia, Diose												
	banyan, <i>Pistia</i> , ba	anana, pineapple, str	rawberry, <i>Vanda</i>	-)							
	1. Seven	2. Eight	3. Tw	velve	4 . Si	X							
15.	Leafless plant that	at depends entirely o	on the metabolism of	f its roots									
			*	0	()							
	1) Cuscuta	2) Asparagus	3) Teaniophyllum	4) /	Rhizoph	ora							
16.	Root modification	ns that perform two	functions		()							
	I. Roots of Taenic	ophyllum	II. Velamen roots of Vanda										
	III. Haustorial root	ts Cuscuta	IV. Roots of Fabac	eae									
	1) I & II	2) II & III	3) III & IV	4) I	IV & I								
17.	True statement a												
					()							
	1) In Oryza length	of all the roots is mo	ore or less same										
	2) In Vanda all the	e roots are of same len	ngth										
	3) Roots on aerial	stems develop from a	axillary buds										
	4) All roots in all t	he plants help in ancl	horage										
18.	Brace or stilt root	ts help in			()							
	1. Anchorage	2. Reproduction	3. Storage	4. Breathin	ng								
19.	Roots that grow r	negatively geotrophi	c are seen in		()							
	1. Viscum	2. Avicennia	3.Dolichos	4. Vanda									
20.	Scientific name of	f sweet potato is			()							
	1. Dahlia	1. Dahlia 2. Balanophora 3.Arachis 4. Ipomea											

21. Lowermost branches with single elongated internode helping in vegetative propagation in) (1) Pistia 2) Jasminum 3) Oxalis 4) Chrysanthemum 22. Stem modifications in Oxalis () 2) Underground 3) Aerial & sub aerial 4) Only sub aerial 1) Aerial 23. Identify the correct pair from the following) (1. Potato- stem tuber 2. Amorphophallus- corm 3. Oxalis- sucker 4. Nerium- Offset 24. Axillary buds in underground stems are protected by 1) Soil 2) Stipules 3) Scaly leaves 4) Epidermis 25. Underground stem that grows parallel to the surface is seen in) 2) Strawberry 1) Oxalis 3) Curcuma 4) Solanum 26. True statement regarding rhizome is () I. Rhizomes grow parallel to the surface II. Only scaly leaves are seen. III. Roots are produced at basal part. 1) Only I 2) Only II 3) I & II 4) II & III The branches of limited growth that perform photosynthesis are called as(27.) 1. Assimilatory branch 2. Suckers 3. Stolon 4. Cladophylls 28. A scaly bulb enclosed in white skinny tunic in) (2) Allium satiium 3) Lilium candidum 4) Scilla indica 1) Allium cepa 29. Adventitious roots are produced at the point of contact in () 1) Runners 2) Stolons 3) Suckers 4) Offset **30. Offsets present in** () 2) Solanum 1) Opuntia 3) Dioscorea 4) *Pistia* 31. Leaf apex can modify into () A) Spine B) Tendril C) Phyllode D) Thorn 1. A & B 2. B & C 3. C & D 4. A. B & C 32. Phyllode is modification of 1. Leaf 2. Petiole 3. Stem 4. Branch 33. Photosynthetic appendage in *Pisum* is/are) (

1) All leaf lets 2) Lower leaflets 3) Entire Leaf 4) Lower leaflets and stipules

34.	In Allium					()
	1) Petiole is modified	2) Venation	is para	llel			
	3) Venation is reticulate	4) Two coty	ledon a	are present			
35.	Assertion (A) : In Pisun	<i>i</i> stipules are	persist	ent.		()
	Reason(R) : In Pisum, J	lant depends	partly	on stipules f	for photo	osynthesis.	
	1) Both A and R are corr	ect and R is the	e correc	et explanation	n of A.		
	2) Both A and R are corr	ect but R is no	t the co	rrect explana	tion of A	.	$\mathbf{\wedge}$
	3) A is correct, R is false						
	4) A is false, R is correct					Q	
36.	Three modifications in	a leaf is seen i	n			V ₍)
	A) Allium B) H	Bryophyllum		C) Opuntic	ı	D) Nepenthe	5
	1. A & B 2. B	& C	3.C &	٤D	\mathbf{O}	4. D	
37.	In opposite phyllotaxy					()
	1) Always two rows of le	aves are prese	nt	2) Sometin	nes four i	rows are seen	
	3) More than four rows a	re also possibl	e	4) Only on	e row of	leaves	
38.	Venetion in Oryza sative	<i>t</i> is	$\boldsymbol{\lambda}$			()
	1) Multicostate parallel	2) U	nicostat	e parallel			
	3) Multicostate reticulat	e 4) Ui	nicostat	e reticulate			
39.	Only spines are present	at a node in				()
	1) Acacia 2) C	puntia	3) <i>Ci</i>	trus	4) <i>Pa</i>	rkinsonia	
40.	Assertion (A) : Scaly lea	ives are xerop	ohytic a	daptation.		()
	Reason (R) : Scaly leav	es cannot perf	orm pl	ıotosynthesi	s.		
	1) Both A and R are corr	ect and R is the	e correc	t explanation	n of A.		
	2) Both A and R are corr	ect but R is no	t the co	rrect explana	tion of A	۱.	
	3) A is correct, R is false						
	4) A is false, R is correct						
41.	Plant that climbs with t	he help of pet	iole is			()
	A) Nepenthes	B) Cucurbia	ta	C) Doliche	<i>os</i>	D) Pisum	
	1. A & B 2. O	nly A	3. A,	B & D	4. A, 1	B, C & D	
42.	Epiphyllous buds are p	resent in				()
	1) Bulbophyllum	2) Opuntia					
	3) Bryophyllum	4) Dioscore	<i>a</i>				

43. Match the following

	List - I	List - II							
	A) Spine	I. Pisum		А	В	С	D		
	B) Tendril	II. Opuntia	1)	V	Ι	IV	III		
	C) Swollen petiole	III. Bougainvillia	2)	III	Ι	IV	II		
	D) Phyllode	IV. Nepenthes	3)	III	V	Ι	II		
		V. Eichornia	4)	II	Ι	V	V		
44.	Proteins produced	in the pitcher of N	epenth	es				()
	1) Protease	2) Amylase	3) Lij	pase		4) Nu	iclease		
45.	Number of rows of	f leaves in opposite	phyllo	taxy c	an be			()
	1) One	2) Two or four			3) Th	ree	•	4) Four	

Root ,Stem & Leaf-Key

											\								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	1	2	2	1	1	2	1	3	F	3	1	1	1	4	1	1	1	4
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
1	4	2	3	3	1	4	2	2	4	1	2	4	2	1	4	2	1	2	3
41	42	43	44	45			C												
2	3	4	1	2		\searrow													

()